

XY2503 硬件规格书

V1.0

2016年 07月 14日

概述

本核心板是以 MT2503 为平台,此芯片高度集成了 GPS、BT、PMIC。其中 MT2503D 是内部集成了 32M 的 RAM 与 32M 的 ROM,MT2503A 内部只集成了 32M 的 RAM,需要外挂一个 SPI 的 FLASH。通过对核心板 XY2503 的介绍,用以指导用户基于该核心板进行硬件设计,并在基础上更方便快捷的进行各种底板产品的设计。

阅读对象

本文档主要适用于以下工程师:

系统设计工程师

硬件工程师

软件工程师

结构工程师

测试工程师

内容简介

本文档包含 2 章,内容如下

章节	内容
1 综述	介绍 XY2503 模块的基本技术规格、参考设计的相关标准。
2 模块管脚定义	介绍 XY2503 模块引脚名称和功能
3 模块功能介绍	介绍各个功能模块的设计指导

版本历史

日期	版本	修改记录
		Y

第一章 综述

XY2503 是一款 GSM+GPRS+BT+GPS+BAIDUOR 的模块,SMT 封装。其性能稳定,外形紧凑,性价比高,功能强大,拥有良好的可扩展性和设计灵活性,能适用于各种产品设计需求。产品主要定位在定位,可穿戴行业,GPRS 通讯,物联网等行业。

主要特性

■ 操作系统

Nucleus OS

■ 处理器

32-bit ARM7EJ-S 158MHz

■ 内存

MT2503A: 32Mbit(RAM)

MT2503D: 32Mbit(RAM) + 32Mbit(ROM)

■ 无线连接

FM: FM 接收器 Bluetooth: BT 3.0

GNSS: GPS、GLONASS、GALILEO、Beidou A-GPS 支持双星系统

■ 支持频段

GSM、GPRS: 850、900、1800、1900

GPRS: Class 12

■ 用户接口

显示屏: QVGA(320 * 240)

触摸屏: 电容触摸屏或电阻触摸屏

摄像头: 0.3MP USB: USB1.1 FS/LS

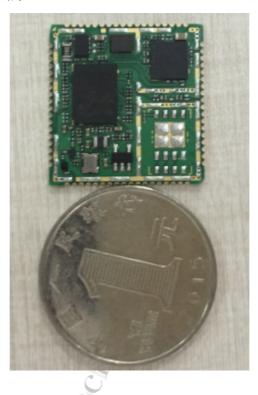
产品规格

- 主板设计方式:核心板+副板方式
- 供应电压范围: 3.6V~4.5V
- 尺寸: 22mm * 23mm *2.8mm
- 72pin SMT
- 操作温度(-20°~+70°, 防震, 防跌落)
- 3个天线(BT 天线、GPS 天线、GSM 天线)

扩展接口

- 1 路 SDIO2.0
- 1 路 SIM 卡
- 1路 UART
- 1 路硬件 I2C
- 音频: 1 路 MIC 输入/1 路输出
- USB 2.0 HS peripheral(OTG)
- 3*3 个按键
- 多个外中断

应用前景


- 定位器
- 穿戴设备
- 物联网
- GSM 模块

第二章 模块管脚定义

以下是我们的 XY2503 的实物图片

2.2 pin 脚分布

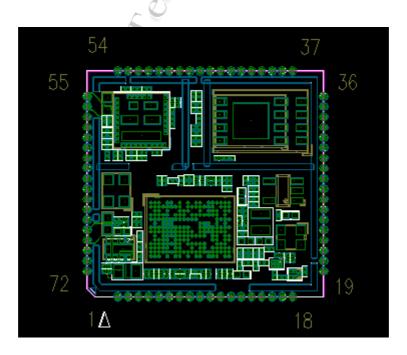


图 2-2

2.2 核心板引脚描述

类型缩写表

缩写	描述	
Al	Alog input	
AO	Analog output	
AIO	Analog bi-dirction	
DI	Digital input	
DO	Digital output	
DIO	Digital bi-direction	
P	Power	
G	Ground	

表 2-1

Pin NO	Pin name	Туре	Description	Power domain
1	SPK_OUTP	AO	Positive output of internal speaker amp	VBAT
2	SPK_OUTN	AO	negative output of internal speaker amp	VBAT
3	MICP0	Al	Microphone channel0 positive input	MICBIAS0
4	MICN0	Al	Microphone channel0 negative input	MICBIAS0
5	MICBIAS0	Р	Microphone Bias source 0	MICBIAS0
6	RESETB	DI	System Reset	DVDD18_EMI
7	LSCE_B	DO	Serial display interface chip select output	DVDD18_EMI
8	LSA0	DO	Serial display interface address	DVDD18_EMI
9	LSDA	DIO	Serial display interface data	DVDD18_EMI
10	LSCK	DO	Serial display interface clock	DVDD18_EMI
11	LPTE	DIO	Serial display tearing signal	DVDD18_EMI
12	LSRSTB	DO	Serial display interface reset	DVDD18_EMI
13	USB_DP	DIO	D+ data input/output	
14	USB_DM	DIO	D- data input/output	
15	VSIM1	Р	LDO output for SIM1	VBAT
16	SIM1_SIO	DIO	SIM1 data input/output	VSIM1
17	SIM1_SRST	DO	SIM1 Card reset output	\/CIN 44
18	SIM1_SCLK	DO	SIM1 Card clock output	VSIM1
19	GND	G	Ground	
20	GPS_ANT	Al	GPS RF antenna	

Pin NO	Pin name	Туре	Description	Power domain		
21	GND	G	Ground			
22	WIFI MCDA0	DIO	SD Serial data IO 0	DVDD33_MSDC		
	WIII _ IVICEDAG	Dio	Memory stick serial data 0			
23	WIFI_MCDA3	DIO	SD Serial data IO 3	DVDD33_MSDC		
25	WIFI_WICDAS	סום	Memory stick serial data 3			
24	WIFI_MCDA2	MUEL MCDA2	WIEL MCDA2	IFI MCDA2 DIO SD Serial data IO 2	SD Serial data IO 2	DVDD33 MCDC
24		DIO	Memory stick serial data 2	DVDD33_MSDC		
25	WIEL MCCMO	WIFI_MCCM0 DO	SD Command output	DVDD33 MCDC		
25	WIFI_WICCIVIO		00	Memory stick bus state output	DVDD33_MSDC	
26	WIFI_MCDA1	WIEL MCDA1	WIEL MCDA1	DIO	SD Serial data IO 1	טאטטא אינטכ
20		סוט	Memory stick serial data 1	DVDD33_MSDC		
27	27 WIFI_MCCK	DO	SD Serial clock	DVDD33 MCDC		
27		DO	Memory stick serial clock	DVDD33_MSDC		
28	VMC	Р	LDO output for memory card	VBAT		

29	VRTC	Р	LDO output for RTC	VBAT
30	MT2503_CMCSK	DO	CMOS sensor pixel clock output	DVDD28
31	MT2503_CMPDN	DO	CMOS sensor power down control	DVDD28
32	MT2503_CMCSD1	DIO	CMOS sensor data input 1	DVDD28
33	MT2503_CMCSD0	DIO	CMOS sensor data input 0	DVDD28
34	MT2503_CMRST	DO	CMOS sensor reset signal output	DVDD28
35	MT2503_CMMCLK	DO	CMOS sensor pixel clock input	DVDD28
36	VIO28	Р	LDO output for 2.8V power	VBAT
37	RTP_YP	AIO	Resistive touch screen YP	DVDD28
38	RTP_XP	AIO	Resistive touch screen XP	DVDD28
39	RTP_YM	AIO	Resistive touch screen YM	DVDD28
40	RTP_XM	AIO	Resistive touch screen XM	DVDD28
41	SDA28	DIO	I2C data 2.8V power domain	DVDD28
42	SCL28	DO	I2C clock 2.8V power domain	DVDD28
43	URXD1	DI	UART1 receive data	DVDD28
44	UTXD1	DO	UART1 transmit data	DVDD28
45	GND	G	Ground	
46	BT_ANT	AIO	BT RF antenna	
47	GND	G	Ground	
48	KROW0	DO	Keypad row 0	DVDD28
49	KROW1	DO .	Keypad row 1	DVDD28
50	KCOL1	DI	Keypad column 1	DVDD28
51	KCOL0	DI	Keypad column 0	DVDD28

Pin NO	Pin name	Туре	Description	Power domain
52	GND	G	Ground	
53	GSM_ANT	AIO	GSM RF antenna	
54	GND	G	Ground	
55	VBAT	Р	Battery voltage input	VBAT
56	VBAT	Р	Battery voltage input	VBAT
57	GND	G	Ground	
58	WIFI_OSC_EN	DI	26MHz clock request by external devices	VRF

59	FREF_26M	AO	DCXO reference	VRF
60	EINT_WIFI	DI	Keypad column 2 /EINT12/GPIO14	DVDD28
61	WIFI_EN	DO	AGPIO54	DVDD28
62	WIFI_RST_N	DO	AGPIO55	DVDD28
63	VCAMA	Р	LDO output for sensor	
64	PWRKEY	DI	Power key	VBAT
65	KPLED	Al	Keypad led driver	PWRKEY
66	FM_ANT_P	ΑI	FM input from antenna	VCAMA
67	ADC_IN4	Al	Auxiliary ADC input	AVDD28
68	VCHG	Р	Charge input	
69	VCHG	Р	Charge input	
70	ISINK0	Al	Backlight driver channel 0	VBAT
71	VIBR	Р	LDO output for vibrator	VBAT
72	VIO18	Р	LDO output for 1.8V Power	VBAT

表 2-2

2.3 系统框图

第三章、接口电路设计指导

3.1 电源

XY2503 供电可以支持有电池系统,供电范围可以在 3.4V~4.2V。涉及到的主要电源有: VBUS, VBAT, GND 这两个供电口。

3.1.1 带电池系统

带电池系统的完整供电电路如图 3-1 所示,电池仅支持 4.2V 锂电池,系统对瞬间电流要求较高,因此要求电池整体回路内阻 80 毫欧以下,过流保护需要达到 3A 或更高。此时 VBUS 仅具有充电功能(充电电压 5V)。

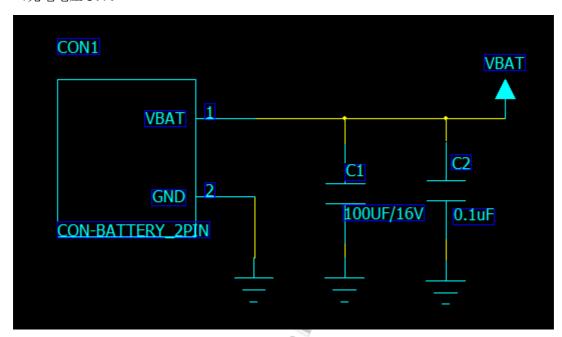
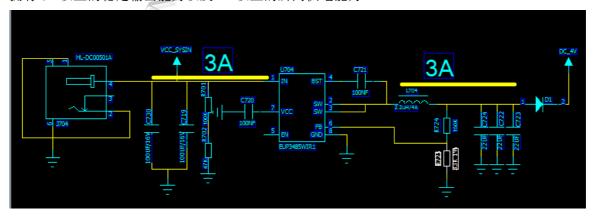



图 3-1

- 1, 电池选用 4.2V
- 2, VBAT 走线宽度大于 80mil。
- 3, C1 要用一相比较大的电容滤波。C2 用比较小的电容滤高频干拢

3.1.2 不带电池系统

当系统直接采用外部电源供电时,供电电路请参照图 3-2,尽量减小供电系统的纹波,并保证拥有 3A 以上的稳定输出能力以及 4A 以上的瞬间供电能力。

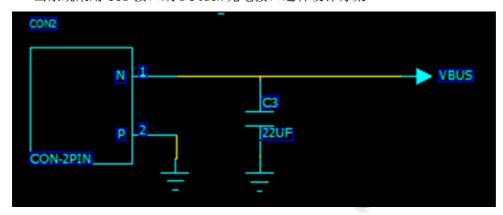
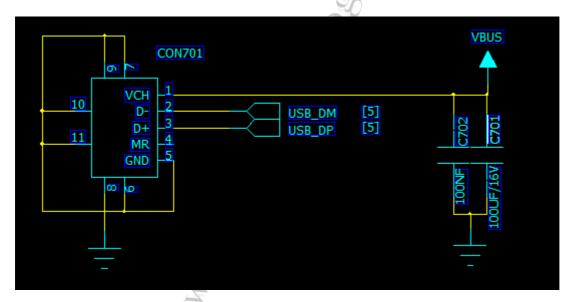


图 3-2


D1 这个二极管,一定要选用压差尽量小的,电流需要超过 3A。这个二极管在这边主要起到防止插入 USB 线后,电流倒灌的问题。

3.1.3 充电系统

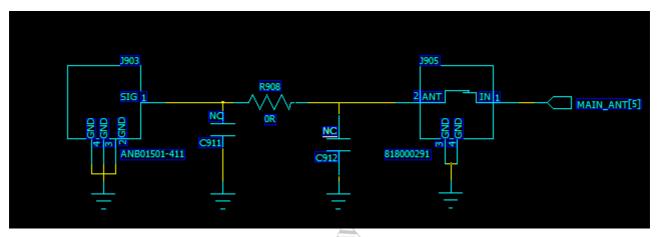
当系统采用 USB 接口或 DC-Jack 充电接口这种设计方案

上图是 DC-JACK

上图是 Micro USB

3.2 射频

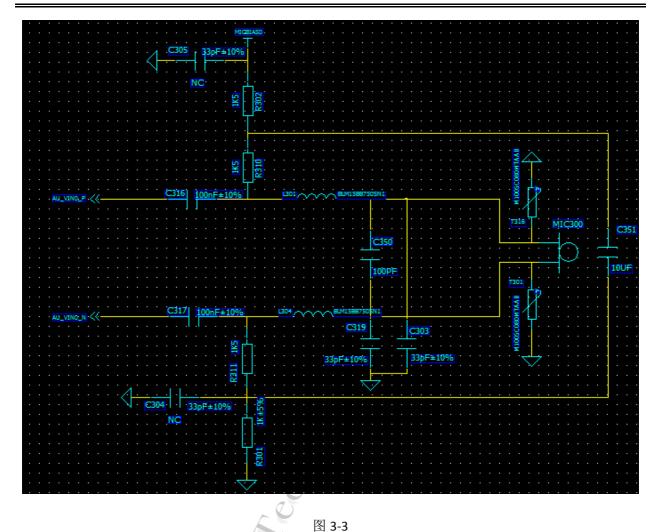
系统共有 4 个射频 PIN,分别为 GSM 天线,FM 天线,BT 天线,GPS 天线


- GSM 天线包括的频段有:
 - GSM: 850, 900, 1800, 1900
- BT 天线包括的频段有:

BT 2.4G

■ GPS 天线包括的频段有: GPS 1.5G

客户的底板,在靠近天线馈点的地方,都需要加一个兀匹配电路如下图所示:


上面这个原理图,J903 是同轴线座子,也可以换成三个天线顶针的焊盘。J905 主要是做校准用的 RF座。 R908,C911,C912 够成一个工型匹配电路。靠近天线馈点放置。另外需要注意 RF 线一定要走微带 50 欧的线。尽量别打过孔

3.3 音频

系统备有一个音频输入口,一个音频输出口; n

■ MICO 通道主要用于主 MIC 的输入,使用驻极体 MIC 时其典型电路如图 3-3 所示。

- 1,输入电容尽量靠近核心板,MICBIASO偏压请注意保护,以免引入噪声;
- 2, 差分走线且包地保护, 以免引入噪声

使用模拟硅麦时其典型应用电路如图 3-4 所示

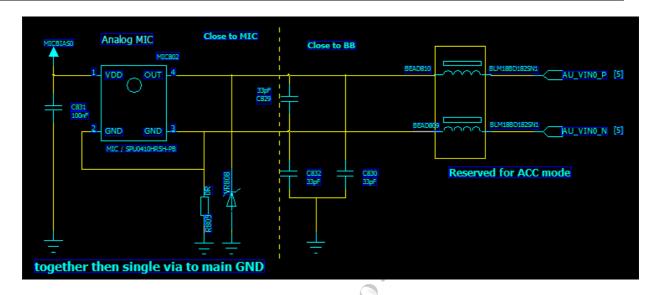


图 3-4

- 1, R809 使用 0 欧的电阻
- 2, B809 和 B810 使用 0402 封装, 方便更换磁珠
- 3,不要在通路中串隔直电容
- 4, 差分走线, 包地保护, 以免引入噪声

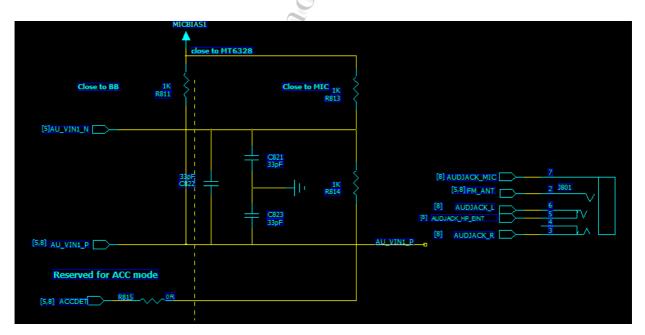


图 3-5

n

■ AU_SPK1P/AU_SPK1N 主要用于喇叭的输出,其输出功率为 0.7W(电池电压 3.7V,负载 8 欧姆), 并可选择工作在 AB 类模式或者 D 类模式 (AB 类的输出功率略低),其典型应用电路如 图 3-7 所示。

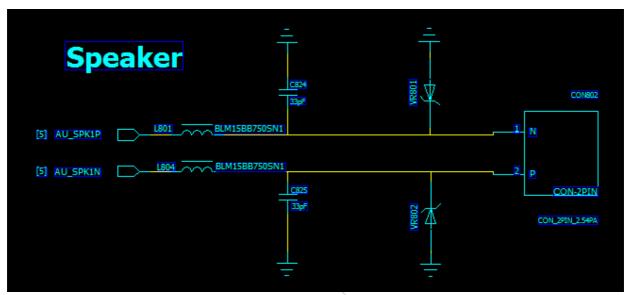


图 3-7

- 1, 走线宽度要足够
- 2, L801 和 L804 的磁珠请选用 0603 封装,过流能力要足够,并注意静态直流阻抗不宜太大,以免过多损耗功率导致喇叭声音太小
 - 3, 如果认为喇叭输出功率不够,需要进一步放大,请参照图 3-8;

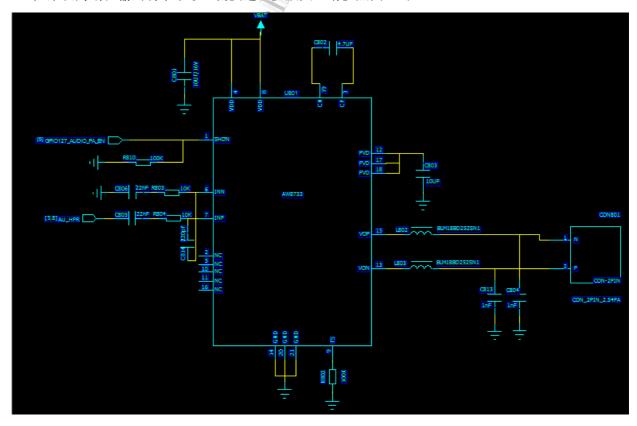


图 3-8

- 1, 音源选用耳机输出作为功放的输入, 使用内部功放的输出直接放大, 信噪比会比较低
- 2,输出端的磁珠,请使用 DCR 值较低的器件,以免喇叭功率损耗过大,影响喇叭声音大小,请使用 0603 封装的磁珠,保证过流能力

3.4 扩展口

3.4.1 T 卡

T卡与 WIFI 在 MT2503 上只能二选一用的都相同的网络。具体可以参考我们的开发板,这一块如果不清楚可以与我们公司联系。

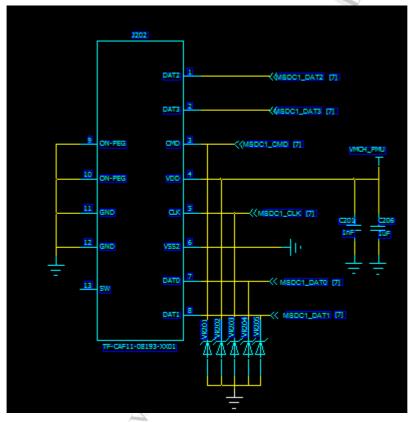


图 3-9

- 1, T卡请使用 MSDC1 接口,数据线不需要上拉电阻
- 2, T卡供电电源请使用 VMCH_PMU,并放置最少 4.7UF 电容

3.4.2 SIM 卡

系统可以支持一张 GSM 的 SIM 卡,典型应用电路如图 3-10 所示

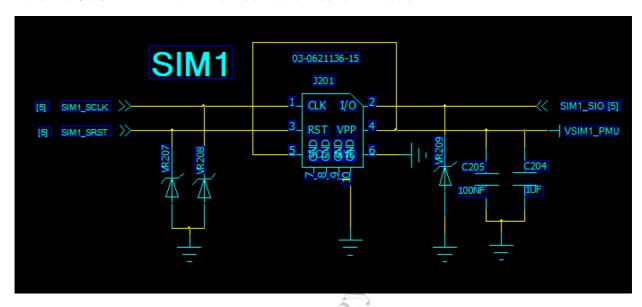


图 3-10

- 1, VSIM_PMU 请放置 1uF 电容
- 2, 热插拔的中断口不可随意选择, SIM 卡 1 只能选择 EINT4, SIM 卡 2 只能选择 EINT5,
- 3, CLK 走线需要保护

3.4.3 USB 接口

USB 接口的典型应用电路如图 3-11 所示

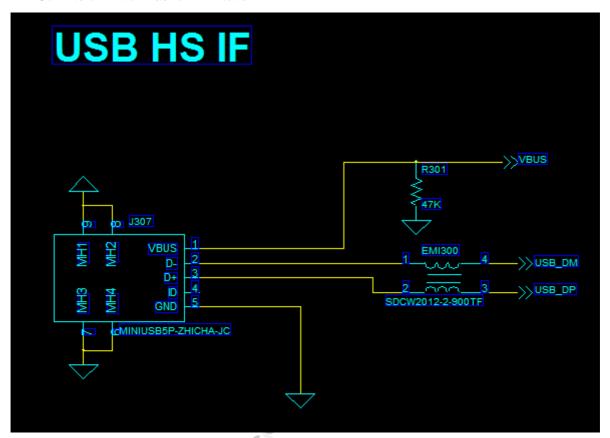


图 3-11

- 1, EMI300 为共模滤波器,如果没有过眼图等严格的要求,可以省略
- 2, DP, DM 请做 90 欧姆差分阻抗线
- 3, USB 供电请参看章节 3.1.3

3.4.4 键盘

系统具有 3*3 的阵列键盘,典型应用如图 3-12 所示,

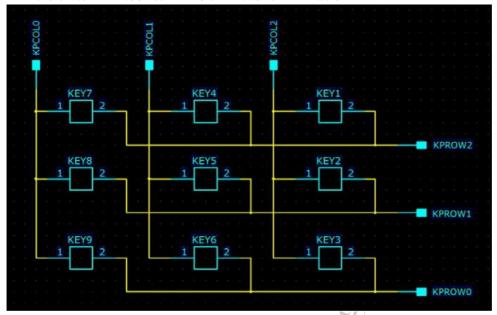


图 3-12

- 1, KPCOLO 有特殊功能,在上电时拉低可以强制进入下载模式,请注意;
- 2, 请根据系统设计情况自行做静电防护处理;

系统的一个特殊按键: 开机键, 其典型应用如图 3-14 所示

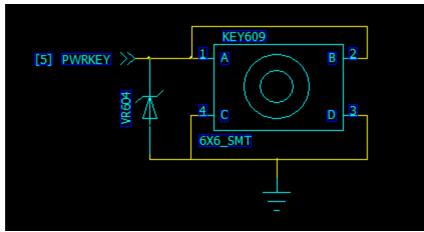


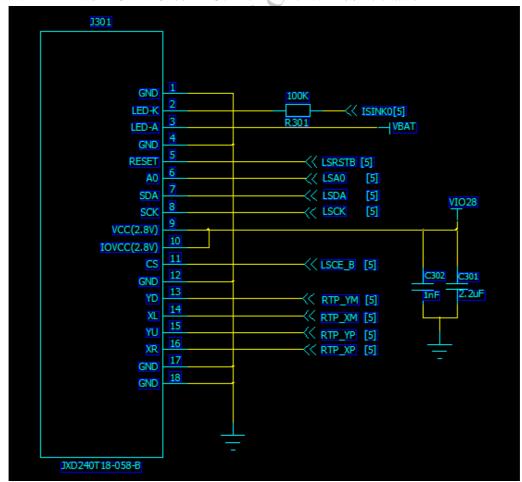
图 3-14

- 1,不要加任何上拉或下拉
- 2, 根据系统设计情况做好静电防护处理
- 3,长按开机键也可以实现系统复位

3.4.5 中断

系统提供了很多个外中断接口,接口电平均为 2.8V; 中断可以任意分配,未用到的 EINT 接口也可以当作普通 GPIO 口使用

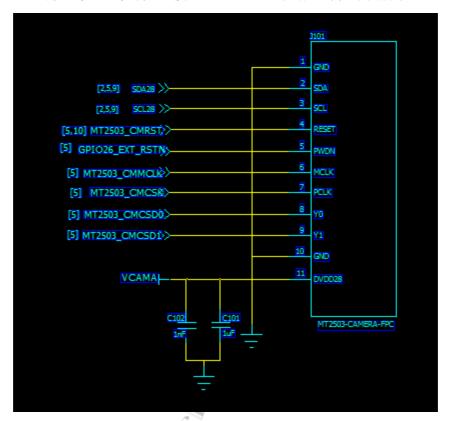
3.4.6 UART □


系统具有一路 UART 接口,为 2.8V 接口电平

3.4.7 I2C 接口

系统具有一路 I2C 接口,为 2.8V 接口电平。

3.6 LCM 电路设计


我们的 XY2503 的核心板,只支持 SPI 接口的 LCM,具体电路如下图所示:

3.6 摄像头电路

我们的 XY2503 的核心板,只支持 SPI 接口的 CAMERA,具体电路如下图所示:

Meh-Mobi Technology Co. Ltd.

深圳市新移科技有限公司

23